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Studies of two β-decay correlation coefficients 

 

I. S. Towner and J. C. Hardy 

 

In studies of nuclear beta decay, the two most commonly examined correlation coefficients are 

the beta-neutrino angular correlation coefficient, aev, and the beta asymmetry, Aβ  the correlation between 

the direction of polarization in the parent nucleus and the direction of the emitted electron.  These two 

correlation coefficients can be written in the form 

 

   ܽ௘ఔሺܹሻ ൌ ܽ௘ఔ଴ ൅ Δܽ௘ఔሺܹሻ, 

ఉሺܹሻܣ    ൌ ఉܣ
଴ ൅ Δܣఉሺܹሻ,             (1) 

 

where ܽ௘ఔ଴  and ܣఉ
଴  are the major contributions depending on just two parameters, a1 and c1, defined as 

ܽଵ ൌ ݃௏ ிࣧ and ܿଵ ൌ ݃஺ ீ்ࣧ with ிࣧ and ீ்ࣧ being the Fermi and Gamow-Teller matrix elements 

and ݃௏ and ݃஺ their respective coupling constants: 
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Here α and γ are simple geometric functions of the initial and final nuclear spins, Ji and Jf, and defined as 
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with W(...) being a Racah recoupling coefficient. The upper sign is used for electron emission, the lower 

sign for positron emission. Added to these major contributions in Eq. (1) are small correction terms Δaeν 

and ΔAβ, typically of order 1%, that are dependent on the electron energy, W. Our goal here is to study 

these correction terms firstly by using the exact β-decay formalism of Behrens-Bühring (BB) [1], 

secondly by finding approximate formulae based on BB obtained by making appropriate expansions of 

the lepton functions, and thirdly by using approximate formulae given in Holstein [2] and Wilkinson [3].  

The formalism associated with this study is given in Towner's summer report [4] and will not be 

reproduced here. 

In what follows we give some numerical results for the beta-neutrino correlation coefficient aeν 

and the β-asymmetry parameter Aβ for the neutron and five examples of mirror transitions in the s,d-shell.  

These five examples were the cases studied by Naviliat-Cuncic and Severijns [5], who used measured 

values of lifetimes and correlation coefficients to determine the Cabibbo-Kobayashi-Maskawa quark-

mixing matrix element, Vud.  In their analysis, these authors used the Holstein formulae to apply 
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corrections Δaeν(W) and ΔAβ(W) to the measured correlation coefficients, Eq. (1).  In this work, we will 

display the numerical differences between the BB and Holstein formulae for these corrections. 

The beta-neutrino and beta-asymmetry correlation coefficients can be cast  into the form 

 

  ܽሺܹሻ ൌ ܽ଴ሺ1 ൅ ଴ݏ ൅ ଵܹݏ ൅
௦మ
ௐ
൅  ଷܹଶሻ,            (5)ݏ

 

where a stands for either the beta-neutrino correlation coefficient aeν or the beta-asymmetry parameter Aβ 

and a0 its Standard-Model value, either ܽ௘ఔ଴   or ܣఉ
଴  as given in Eq.(2).   

Eight nuclear-structure parameters a1, c1, x, തܾ, ݀̅, ݃̅, ܬଶഥ  and ̅݌ need to be specified.  They are 

defined as 
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with ݃௏ ൌ 1, the vector coupling constant, ݃஺ the axial-vector coupling constant, ݃ெ ൌ 4.706 the 

nucleon isovector  magnetic moment, M the nucleon mass in electron rest-mass units and R the nuclear 

radius in electron Compton wavelength units. The pseudoscalar coupling constant, ݃௉, is fixed from the 

PCAC relation at zero momentum transfer: ݃௉ ൌ െሺ2ܯ/݉గሻଶ݃஺, with mπ the pion mass. The required 

nuclear matrix elements are defined in Eq. (68) of [2].  Schematically they are written: ிࣧ ൌ 〈1〉, 

ீ்ࣧ ൌ ఙ௥మࣧ ,〈ߪ〉 ൌ ௞ࣧ௬ ,〈ߪଶݎ〉 ൌ ሺ165/ߨሻଵ/ଶ〈ݎଶሾ ଶܻ ൈ ሿሺ௞ሻ〉, ௅ࣧߪ ൌ ఙࣧ௅ ,〈ܮ〉 ൌ ߪ〉 ൈ  and 〈ܮ

ொࣧ ൌ ሺ45/ߨሻଵ/ଶ〈ݎଶ ଶܻ〉. For the present time, we have left out the relativistic matrix elements denoted in 

[2] as ௥ࣧ.௣, ࣧሼ௥,௣ሽ and ఙࣧ௥௣ and dropped any second-class current terms. 

For the neutron and the five mirror transitions in the s,d-shell, a1 is fixed by the CVC hypothesis 

to be the same in all cases, a1 = 1.  The matrix elements, ఙࣧ௅ and ଶࣧ௬ and hence ݀̅ and ܬଶഥ , are zero 

because the expectation values of σ × L and ሾ࣌ ൈ ଶܻሿሺଶሻ vanish in diagonal matrix elements.  The neutron 

is considered a pure S-state, so ௅ࣧ, ொࣧ, ଵࣧ௬, and hence x, are all zero, while the Gamow-Teller matrix 

element is fixed at ீ்ࣧ ൌ √3.   For the s,d-shell nuclei, we perform a shell-model calculation using the 

USD effective interaction [6] to determine the nuclear matrix elements.  Their values are given in Table I.  

Coupling constants ݃஺  and ݃ெ in finite nuclei are customarily treated as effective coupling constants 
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because they are combined with nuclear matrix elements that have been calculated, inevitably, in a finite 

model space.  Adjusting the coupling constants is one way of compensating for the inadequacy of the 

shell-model calculation.  In practice, we adjust gA and gM so that the shell-model calculation yields the 

experimental value of the partial-decay lifetime and the isovector combination of magnetic moments.  

Values of  ݃஺
௘௙௙ and ݃ெ

௘௙௙are given in  Table I. We  also  need to  specify the  nuclear  

radius parameter, R.  We set  ܴଶ ൌ
ଷ

ହ
 is the mean-square radius of the charge-density〈ଶݎ〉 where ,〈ଶݎ〉

distribution of the daughter nucleus in β-decay.  This is the charge distribution the emitted β-decay 

electron encounters and is used in the Dirac equation that is solved to determine the electron wave 

function.  

Our numerical results for the electron-neutrino correlation and beta-asymmetry coefficients are 

given in Tables II and III.  The corrections Δaeν(W) and ΔAβ(W) have been averaged over the entire 

electron spectrum ܽ௘జതതതത and ܣఉതതതത.  For the neutron, this average correction is about 3% for aeν and 2% for Aβ.  

The formulae of Holstein [2] slightly underestimate this correction compared to the exact result computed 

from the formulae of Behrens and Bühring [1].  The results obtained by Wilkinson [3] are derivable from 

Holstein's formulae on setting (αZ) → 0 and R2 → 0, but retaining terms linear in R.  Only the weak 

magnetism term in തܾ and the kinematic recoil correction are retained by Wilkinson. We see that 

Wilkinson's results for the neutron are very similar to Holstein's. 

For the five examples of mirror transitions in the s,d-shell, we see that Holstein's formulae 

significantly underestimate the correction to aeν  in 19Ne, 21Na, 29P and to Aβ in 21Na and 29P, while 

overestimating the correction to Aβ in 19Ne.  This discrepancy can be traced to the lack of a term in ሺܼߙሻതܾ, 

an electromagnetic correction in the weak-magnetism form factor.  For 35Ar and 37K, the difference 

between Holstein and BB is somewhat less, but then from Table I one observes the weak-magnetism 

parameter തܾ is somewhat less in these two cases. 

 

 

Table I. Nuclear matrix elements and related parameters used in the computations of aeν and Aβ.  For the s,d-
nuclei, the matrix elements were obtained with the shell model using the USD effective interaction [6].  
Coupling constants gA and gM are quenched in finite nuclei in order that the shell model reproduces the 
experimental values for the partial decay lifetimes and the isovector combination of magnetic moments.  For 
these mirror transitions, ࢊഥ and ࡶ૛ഥ   are identically zero.  
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Table II. Electron-neutrino correlation coefficient ࣏ࢋࢇ૙  from the Standard Model, the correction to it, ઢ࣏ࢋࢇሺࢃሻ, 
averaged over the electron energy spectrum ઢ࣏ࢋࢇതതതതതത and the final corrected coefficient again averaged over the entire 
energy spectrum ࣏ࢋࢇതതതതത. Shown are the results obtained with shell-model nuclear matrix elements given in Table I 
from the approximate formulae of Wilkinson [3], Holstein [2], Behrens-Bühring (BB) [1], and the exactly 
computed result with the BB formalism. Also given are the parameters of the correction s0, s1, s2 and s3 as defined 
in Eq. (5). 
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Table III. Beta-asymmetry correlation coefficient  ࢼ࡭
૙  from the Standard Model, the correction to it ΔAβ(W)  

averaged over the electron energy spectrum ઢࢼ࡭തതതതതതand the final corrected coefficient, again averaged over the entire 
energy spectrum ࢼ࡭തതതത.  Shown are the results obtained with shell-model nuclear matrix elements given in Table I 
from the approximate formulae of Wilkinson [3], Holstein [2], Behrens-Bühring (BB) [1], and the exactly 
computed result with the BB formalism. Also given are the parameters of the correction s0, s1, s2 and s3 as defined 
in Eq. (5). 


